相關(guān)鏈接: 中國(guó)安全網(wǎng) 中國(guó)質(zhì)量網(wǎng) 中國(guó)論文網(wǎng) 中國(guó)資訊網(wǎng)
基于改進(jìn)證據(jù)理論的目標(biāo)識(shí)別融合方法
(軍械工程學(xué)院電子與光學(xué)工程系.石家莊050003)
摘要:對(duì)目標(biāo)進(jìn)行識(shí)別時(shí),應(yīng)用Dempster證據(jù)組合規(guī)融合沖突證據(jù)會(huì)產(chǎn)生不合理的結(jié)論。針針對(duì)這個(gè)問(wèn)題,提出一種基于加權(quán)馬氏距離的證據(jù)理論改進(jìn)方法使用證據(jù)理前對(duì)證據(jù)進(jìn)行預(yù)處理,引入加權(quán)的馬氏距離來(lái)度量不同證據(jù)被其他證據(jù)支持的程度。利用平均證據(jù)代替沖突證據(jù),講支持度作為證據(jù)的權(quán)值.再應(yīng)用Dempster證據(jù)組合規(guī)則得出識(shí)別結(jié)果。通過(guò)仿真實(shí)驗(yàn),將該方法與現(xiàn)有方法進(jìn)行了對(duì)比分析.結(jié)果表明該方法較其他方法能更有效地融合高度沖突的證據(jù),提高了目標(biāo)識(shí)別的準(zhǔn)確性。
關(guān)鍵詞:目標(biāo)識(shí)別;證據(jù)理論;沖突證據(jù);信息融合;馬氏距高
中圖分類號(hào):TN391 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1671 - 637X(-2015)09 - 0046 - 04
結(jié)論
對(duì)目標(biāo)進(jìn)行識(shí)別時(shí),由于人為或自然因素的影響,傳感器獲得的目標(biāo)信息可能會(huì)發(fā)生沖突,而Dempster證據(jù)組合規(guī)則無(wú)法正確處理這些沖突。針對(duì)這一問(wèn)題,在現(xiàn)有改進(jìn)方法的基礎(chǔ)上,本文提出一種利用加權(quán)馬氏距離的證據(jù)理論改進(jìn)方法。馬氏距離考慮了各證據(jù)的分布,并用信息熵來(lái)度量證據(jù)各分量的重要程度,作為馬氏距離的權(quán)重,充分利用了目標(biāo)數(shù)據(jù)所給的信息。通過(guò)實(shí)驗(yàn)驗(yàn)證了本文的改進(jìn)方法較以往的方法能夠更加有效地融合高度沖突的證據(jù),提高了目標(biāo)識(shí)別的準(zhǔn)確性。
參考文獻(xiàn)
'I]吳瑕,周焰,蔡益朝,等,多傳感器目標(biāo)融合識(shí)別系統(tǒng)模型研究現(xiàn)狀與問(wèn)題[J].宇航學(xué)報(bào),2010,31(5): 1413-1420.( WU X.ZHOU Y.CAI Y C,et al.Researc,hactualities and problems on multisensor target recognition system model[J].Journal of Astronautics, 2010, 31(5): 1413 -1420.)
-2]蔣曉瑜,梁浩聰,王加,等.目標(biāo)識(shí)別中多傳感器信息融合算法比較[J].計(jì)算機(jī)系統(tǒng)應(yīng)用,2013,22(4):10-13.( JIANG X Y,LIANCJ H C,WANG J,et al.Compari-son of multi-sensor information fusion algorithms based on target recognition[ Jl. Computer Svstems & Applica- tions, 2013, 22(4):10-13.)
-3j 韓德強(qiáng),楊藝,韓崇昭.DS證據(jù)理論研究進(jìn)展及相關(guān)問(wèn) 題探討[J].控制與決策,2014,29 (1):1-11.(HAN D Q, YANG Y,HAN C Z.Advances in DS evidence theory and related discussions[J].Control and Decision, 2014, 29(1):1-11.)
4]何友,王國(guó)宏,關(guān)欣.信息融合理論及應(yīng)用[M].北京: 電子工業(yè)出版社,2010.( HE Y,WANG C H,GUAN X. Information fusion theory with applications[M].Beijing: Publishing House of Electronics Industry, 2010.)
5]耿濤,盧廣山,張安.基于直覺(jué)模糊證據(jù)合成的多傳感 器目標(biāo)識(shí)別rJ].控制與決策,2012,27(11):1725-1728.(GENC T^ LU G S ZHA/\'C A Jntu/tiorusnc fuzu evidence combination algorithm for multi-sensor target recognition [J]. Control and Decision^ 2012, 27( 11):1725-1728.)
[6]韓峰,楊萬(wàn)海,袁曉光.一種有效處理沖突證據(jù)的組合方法[J].電光與控制,2010,17 (4):5-8.( HAN F.YANG WH,YUAN X G.An efficient approac,h for conflict evidence combination[J]. Electronics Optics&Control, 2010, 17(4): 5-8.1
[7] LEFEVRE E,COLOT 0.VANNOORENBERGHE P.Belief function combination andConflict management[J].Infor- mation Fusion 2002,3(3):149-162.
[8] SMETS P,KENNES R.The transfer belief model [Jl. Ar- tificial Intelligence, 1994, 66(3):191 -234.
[9] YAGER R R.On the Dempster-Shafer framework ancl new combination rules[J].Information Science, 1989, 41(2): 93-137.
[10] 補(bǔ)全,葉秀清,顧偉康.一種新的基于證據(jù)理論的合成公式[J].電子學(xué)報(bào),2000,28(8):117-119.(SUN Q, YE X Q,GU W K.A new combination rules of evi-dence theory[J].Acta Electronica Sinica, 2000, 28(8):117 -119,)
[11] MURPHY C K.Combining belief functions when evidenCeconflicts[J].Decision Support Systems, 2000, 29(1):1-9.
[12]鄧勇,施文康,朱振福,一種有效處理沖突證據(jù)的組合方法[J].紅外與毫米波學(xué)報(bào),2004,23(1):27-32. f DEhrG Y.SHI W K.ZHU Z F.Efficient combination approach of conflict evidence[J].Joumal Infrared Milli- meter and Waves, 2004, 23(1):27-32.)
[13] 朱江樂(lè),章衛(wèi)國(guó),邱岳恒,等.基于改進(jìn)證據(jù)理論的多傳感器目標(biāo)識(shí)別[J].火力與指揮控制,2013,38(8):107-110.( ZHU J L ZHANG W G,QIU Y H,et al.Multi-sensor target identification based on improved evidence theory[J].Fire Control&Command Control, 2013, 38
(8):107-110.)
[14]徐琰珂,梁曉庚,賈曉洪.利用模糊證據(jù)理論的信息 融合方法及其應(yīng)用[J].哈爾濱工業(yè)大學(xué)學(xué)報(bào),2012,44(3):107-111.( XU Y K.LIANG X G,JIA X H.Infor-mation fusion based on fuzzy evidence theory and its ap- plication in target recognition[J].Journal of Harbin In-stitute of Technology, 2012, 44(3):107 -111.)
[15] 杭文慶,姜長(zhǎng)生.基于多源信息和改進(jìn)證據(jù)理論的空戰(zhàn)攻擊決策[J].電光與控制,2010,17 (2):26-30. ( HANG W Q,JIANG C S.Attacking decision-making of air combat based on multi-source information and im- proved evidence theory[J].Electronics Optics&Con- troL 2010, 17(2):26-30.)
[16] 帳潤(rùn)楚,多元統(tǒng)計(jì)分析[M].北京:科學(xué)出版社,2006. ( ZHANG R C.Multivariate statistic:al analysis[M].Bei- jing:Science Press, 2006.)
[17]施政,夏喜蓮,基于熵理論的加權(quán)馬氏距離及其應(yīng)用 [J].阜陽(yáng)師范學(xué)院學(xué)報(bào):自然科學(xué)版,2011,28(3): 21-24.( SHI Z,XIA X L.Weighted Mahalanobis distance based on the entropy theory and its application[J]. Journal of
[18] 丁濤,丁浩,朱世根.加權(quán)距離判別分析及其在模式識(shí)別中的應(yīng)用[J].組合機(jī)床與自動(dòng)化加工技術(shù),2013(8):51-54.( DINC T,DING|L ZHU S G.Discriminant a—nalysis based weighted Mahalanobis distance and application on pattern recognition [Jl. Modular Machine ToolAutomatic Manufacturing Technique, 2013(8):51-54.)
[19] 趑鵬,楊劍,周文軍,等,基于節(jié)點(diǎn)權(quán)重和DS證據(jù)理論的WSN數(shù)據(jù)融合[J].計(jì)算機(jī)測(cè)量與控制,2013,21( 11):3117-3119.( ZHAO P,YANG J, ZHOU W J,eta1. Data fusion in wireless sensor network based on nodeweight and DS evidence theory[J].Computer Measure-ment&Control, 2013, 21( 11):3117-3119.)